东吴证券计算机行业深度报告:AI偏向科普性报告,围绕算法、算力、数据和应用
大模型是AI开发的新范式,是人工智能迈向通用智能的里程碑:大模型指通过在大规模宽泛的数据上进行训练后能适应一系列下游任务的模型,本质依旧是基于统计学的语言模型,只不过“突现能力”赋予其强大的推理能力。现有的大模型的框架在本质上是一致的,几乎所有参数规模超过千亿的大语言模型都采取GPT模式,但是不同类型的企业给予自己所在领域的优势,开发的大模型在功能上还是有所差异。技术对大模型的效果具有决定作用,因此未来竞争格局也依赖于技术突破。
算力是AI时代的“石油”:大模型的训练和推理都会用到AI芯片的算力支持,在数据和算法相同情况下,算力是大模型发展的关键,是人工智能时代的“石油”。我们假设GPT-3训练时间为一个月,则需要843颗英伟达A100芯片。我们假设GPT-3每日日活为5000万,则需要约16255颗英伟达A100芯片。GPT-4为多模态数据,我们预计算力需求量是GPT-3的10倍以上。中国大厂相继布局大模型,我们测算,仅十家头部厂商大模型1年内有望增加约20万片A100需求量。长期来看,则需求量有望超200万片,新增算力需求将使算力市场增长2倍以上。2021年,中国加速卡市场中Nvidia占据超过80%市场份额,国产AI芯片性能与海外仍有差距,国产大模型推出有望加快国产芯片发展。
数据资源是AI产业发展的重要驱动力之一:数据集作为数据资源的核心组成部分,是指经过专业化设计、采集、清洗、标注和管理,生产出来的专供人工智能算法模型训练的数据。大规模语言模型性能强烈依赖于参数规模N,数据集大小D和计算量C,训练数据主要来自于维基百科、书籍、期刊、Reddit社交新闻站点、CommonCrawl和其他数据集,GPT4依靠大量多模态数据训练。未来AI模型的竞争力或体现在数据质量和稀缺性,发展数据要素市场,促进相关公共、企业、个人数据的进一步放开,将为国内AI发展提供重要支撑。
AI赋能各行各业,未来是AI应用的星辰大海:AI堪比第四次技术革命,本轮最直接的应用在内容创作领域,打开产业的想象边界。我们应该去寻找在AI赋能下,应用功能显著改善、客户粘性显著提升,市场空间大幅提升的领域,主要有内容创作,办公软件,ERP,机器人以及芯片设计领域。当前部分大模型厂商已经开启产业化应用,但是算力依旧是限制AI大规模商业化落地的主要原因,一旦解决,直接受益AI+的将是信息化行业,因此我们看好各行业信息化领域处于优势地位的龙头公司。
风险提示:政策推进不及预期;行业竞争加剧。
风险提示:投资人应当认真阅读《基金合同》、《招募说明书》等基金法律文件,了解基金的风险收益特征,并根据自身的投资目的、投资期限、投资经验、资产状况等判断基金是否和投资人的风险承受能力相适应。基金的过往业绩并不预示其未来表现,基金管理人管理的其他基金的业绩并不构成基金业绩表现的保证。基金有风险,投资需谨慎。 免责声明:转载内容来自机构研报摘要、公开权威媒体报道,仅供读者参考,版权归原作者所有,内容为作者个人观点,版权归原作者(机构研究员、媒体记者)所有,内容仅代表作者个人观点,与建信基金管理有限公司无关;不作为对上述所涉行业及相关股票、基金的推荐,也不构成投资建议。对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本公司不作任何保证或承诺,请读者仅作参考。如需购买相关基金产品,请关注投资者适当性管理相关规定,做好风险评测,选择与之相匹配风险等级的产品。本文只提供参考并不构成任何投资及应用建议。如您认为本文对您的知识产权造成了侵害,请立即告知,我们将在第一时间处理。
#算力板块行情继续“燃”#$建信信息产业股票A(OTCFUND|001070)$$建信信息产业股票C(OTCFUND|014863)$$建信高端装备股票A(OTCFUND|011506)$
本文作者可以追加内容哦 !