据悉,脑机接口(Brain-Machine Interface,BMI,也称BCI)是指在人或动物大脑与外部设备之间创建的直接连接,实现脑与设备的信息交换。具体来说,脑机接口技术可分为非侵入式、半侵入式以及侵入式三种。


清华大学医学院长聘教授高小榕表示,脑机接口是很多学科交叉而形成的一个科学领域。它是个硬核科技,并非其他领域研究的技术延伸,而是一个重要的技术汇聚。他认为,脑机接口未来将是一个不可或缺的前沿技术。


随着特斯拉CEO埃隆·马斯克(Elon Musk)成立Neuralink,对脑机接口技术持续投入,进一步让它变得炙手可热,倍受社会关注。目前,脑机接口技术已能够完成单词拼写,设备控制,游戏交互等功能,以及猪、猴子这类动物性实验,而且脑机芯片、脑电采集平台、产品和应用、医疗机构等产业链上下游均有企业布局。


然而,当前脑机接口技术并不完美。随着脑机接口可以使慢性瘫痪患者能够仅用思想来控制计算机、机器人等,但现有的脑机接口技术在侵入性、性能、空间覆盖等方面需要权衡。比如,侵入式脑机接口往往对使用者身体带来损伤,甚至容易在创口引起炎症反应;非侵入式的脑机接口需要佩戴笨重的头盔,体验感有待改进等。此外,每天使用脑机接口设备之前,患者和医生还需要共同重新校准计算设备高达15分钟以上。


为了解决这些问题,2021年,加州理工学院Richard Andersen教授团队就开发了一种新的、侵入性小得多的读取大脑活动方法:功能性超声(fUS)神经影像技术。其技术工作原理是发射高频声音脉冲,然后测量这些声音振动在物质(如人体的各种组织)中的回声,然后声波以不同类型、不同速度传播,并在它们之间的边界反射。此前,该技术通常被用于拍摄孕妇内胎儿及其他诊断图像。


这次,Richard Andersen教授团队以“使用闭环超声脑机接口解码运动计划”为题,将fUS技术在脑机接口领域的研究和实验过程信息发表在顶级学术期刊《自然·神经科学》杂志中。


首先,论文中提到,fUS是一种平衡且补充现有的脑机接口技术瓶颈的技术。而研究人员使用超声波来测量流向特定大脑区域的血流的变化。他们可以记录大脑血液流动的微小变化,空间区域只有100微米宽,大约为一根头发那么宽。他们能够同时测量广泛分布在整个大脑中的微小神经细胞群的活动,其中一些小到只有60个神经元。


其次,论文中指出,为了表明这一方法可成功实施,实验团队进行了一场恒河猴身上的脑机接口动物实验。通过在两只恒河猴进行眼睛和手部运动时的后顶叶皮层传输fUS数据,来测量非人灵长类动物顶叶后皮质(PPC)的大脑活动——规划并帮助执行运动。实验期间,研究人员训练恒河猴,并且使得实验动物被教会了两项任务:移动手来引导屏幕上的光标,移动眼睛看屏幕的特定部分。它们只需要考虑执行任务,而不是实际移动眼睛或手,因为脑机接口可以读取它们的大脑活动。


最后,超声波数据被实时发送到解码器,然后生成控制信号,将光标移动到希望的地方。最终完成训练后的实验猴子,可以使用计算机控制多达八个运动(径向目标)方向,控制平均误差小于40度。同时,团队还开发了一种预训练数据的脑机接口方法,使得猴子可以实时对计算机进行控制和反馈。

追加内容

本文作者可以追加内容哦 !