硅基光电子技术在高性能计算中的应用:密集波分复用技术的创新

原创 逍遥科技 逍遥设计自动化

 2024年09月04日 08:00 四川 听全文

引言

硅基光电子技术成为高性能计算(HPC)和数据中心互连的技术。本文探讨了密集波分复用(DWDM)硅基光电子技术的创新,重点关注惠普企业(HPE)研究人员开发的关键构建模块、集成平台和封装解决方案。



用于高性能计算的DWDM架构


为满足HPC系统不断增长的带宽需求,HPE开发了新型DWDM光收发器架构。这种方法利用光学的波长复用能力,在保持能源效率和低延迟的同时实现高聚合带宽。


图片


图1:DWDM光收发器链路示意图,展示了高基数交换机之间的大带宽通信。



如图1所示,该架构使用多波长梳状激光源产生多个光载波。这些载波随后被微环谐振器调制器阵列调制,这些调制器还充当波长(解)复用器。在接收端,类似的微环谐振器阵列将各个波长通道传送到光电探测器进行检测。


关键构建模块


多波长梳状激光器

量子点(QD)基激光器由于其宽增益带宽和高效的高温工作特性,特别适合作为梳状光源。HPE已经在硅上展示了具有出色性能的异质集成QD梳状激光器。


图片


图2:(a) 硅上QD梳状激光器的俯视图。(b) 制造的器件的光学显微镜图像。(c) 显示1.2 THz 3-dB带宽梳状谱的光谱图。(d) 单个梳齿线上数据传输的眼图和误码率。



图2显示了集成在硅上的QD梳状激光器,具有2.3毫米长的腔体,集成了镜面和可饱和吸收体。该器件展示了相对平坦的梳状谱,3-dB带宽为1.2 THz,通道间隔为101 GHz。数据传输实验表明,在15个测量通道中有14个在10 Gb/s时可以无误差运行。


高效相位调谐器和调制器

对于DWDM系统,精确控制各个通道的波长非常重要。HPE开发了新型异质金属-氧化物-半导体电容器(MOSCAP)结构,可实现近零静态功耗的精细调谐。


图片


图3:(a) 异质MOSCAP的TEM图像和集成MOSCAP的微环谐振器/调制器示意图。(b) 异质MOSCAPs的电容-电压特性。(c) 测量的谱图,显示微环谐振随MOSCAP偏置的变化。



图3展示了与微环谐振器集成的MOSCAP结构。通过施加偏置电压,可以调制氧化物界面附近的载流子浓度,通过等离子体色散效应实现快速和高效的相位调谐。仅使用4V偏置就实现了超过1 nm的波长移动,对应超低调谐功率5.3 nm/pW。


高性能光电探测器

接收端开发了两种类型的雪崩光电探测器(APDs):硅-锗(Si-Ge)APDs和异质QD APDs。


Si-Ge APDs:

图片


图4:(a) 波导Si-Ge SACM APD的横截面和(b)鸟瞰图示意图,以及(c)制造的器件俯视图。



图4显示了波导耦合Si-Ge分离吸收、电荷和倍增(SACM)APD的结构。这些器件表现出优异的温度稳定性,击穿电压温度系数仅为4.2 mV/C。


图片


图5:Si-Ge波导APDs在(a) 30C和(b) 90C下,倍增因子M约为6、8和11.5时的32 Gb/s NRZ和64 Gb/s PAM4眼图。



图5展示了这些APDs的高速性能,在30C和90C下均显示出32 Gb/s NRZ和64 Gb/s PAM4调制的清晰开放眼图。


异质QD APDs:

利用与QD激光器相同的外延层,还开发了异质QD APDs。这些器件显示出有希望的性能,包括创纪录的低暗电流和高雪崩增益。

图片


图6:12 m × 150 m器件的(a) 准TE模式和准TM模式增益,以及(b) S21频率响应。



图6展示了QD APD的偏振相关增益和频率响应。已实现最大增益150(TE)和300(TM),3-dB带宽为15 GHz,增益带宽积为300 GHz。


集成平台开发

为实现III-V材料与硅基光电子的大规模、低成本集成,HPE开发了新型"键合加外延"方法。


图片

图7:制造无缺陷异质平台和硅光源的示意流程:(a) 硅波导形成,(b) 介电层沉积,(c) III-V到硅键合,(d) 大块III-V衬底去除,(e) III-V外延生长,(f) III-V台面形成和金属化。



图7说明了这种集成平台的工艺流程。通过首先将薄III-V模板层键合到硅衬底上,然后进行外延重生长,这种方法消除了晶格和极性不匹配,与直接异质外延相比,显著降低了位错密度。


图片

图8:(a) 器件横截面。(b) 混合端面的SEM图。混合端面激光器:(c) RT脉冲LIV(器件显微镜图像),(d) 脉冲LI高达40C(端面模式分布),(e) 器件光谱。(f) CW LI高达25C。硅端面激光器:(g) RT脉冲LIV(器件显微镜图像和锥形结构SEM图)。(h) 脉冲LI高达35C(端面模式分布)。



图8显示了使用这种平台制造的激光器的性能,展示了良好的光-电流-电压(LIV)特性,可在高达40C的温度下实现激射。


先进的晶圆级测试和分析

为解决环形谐振器器件的表征和鉴定挑战,HPE开发了先进的晶圆级测试和分析技术。


1. 使用混合键合的堆叠PIC和EIC

图片

图9:(a) 接收环路中一个频段内检测到的29个共振。(b) 同一接收环路6个频段的所有共振。(c) 分层聚类结果,相同通道用相同颜色和符号编码。



图9展示了一种基于机器学习的方法,用于准确检测和标记多环DWDM收发器中的共振。通过分析多个波长频段的共振,该技术可以区分由反射引起的分裂峰和相邻环的实际共振。


新型光纤连接解决方案

硅基光电子封装的关键挑战是实现低损耗、可靠的光学接口。HPE开发了可拆卸的扩展光束光连接器,用于与光栅耦合器阵列连接。


图片

图10:光连接器(a)横截面和(b)组装到硅基光电子中间层上。



图10显示了这种连接器解决方案的横截面和组装。使用微透镜阵列芯片将光栅耦合器的光束准直到扩展光束空间,实现与标准单模光纤的可拆卸接口。


图片

图11:光纤到光纤(a)插入损耗重复性,以及(b, c)两个回环光纤通道的传输谱。



图11展示了这种连接器的性能,显示出低插入损耗(<4.7 dB)和多次连接/拆卸循环的良好重复性。


结论

本文介绍的创新展示了硅基光电子技术在下一代HPC互连中的潜力。通过利用DWDM架构和先进的集成平台,可以在带宽密度、能源效率和成本效益方面取得显著改进。该领域的持续研究和开发将在未来带来更大的性能提升。


参考文献

[1]M. Nikdast, S. Pasricha, G. Nicolescu, and A. Seyedi, Eds., Silicon Photonics for High-Performance Computing and Beyond, 1st ed. Boca Raton, FL, USA: CRC Press, 2021.



- END -





软件申请

我们欢迎化合物/硅基光电子芯片的研究人员和工程师申请体验免费版PIC Studio软件。无论是研究还是商业应用,PIC Studio都可提升您的工作效能。

点击左下角"阅读原文"马上申请




欢迎转载



转载请注明出处,请勿修改内容和删除作者信息!






图片



关注我们





                      






关于我们:


深圳逍遥科技有限公司(Latitude Design Automation Inc.)是一家专注于半导体芯片设计自动化(EDA)的高科技软件公司。我们自主开发特色工艺芯片设计和仿真软件,提供成熟的设计解决方案如PIC Studio、MEMS Studio和Meta Studio,分别针对光电芯片、微机电系统、超透镜的设计与仿真。我们提供特色工艺的半导体芯片集成电路版图、IP和PDK工程服务,广泛服务于光通讯、光计算、光量子通信和微纳光子器件领域的头部客户。逍遥科技与国内外晶圆代工厂及硅光/MEMS中试线合作,推动特色工艺半导体产业链发展,致力于为客户提供前沿技术与服务。





(点击上方名片关注我们,发现更多精彩内容)








素材来源官方媒体/网络新闻

阅读原文

阅读 370


追加内容

本文作者可以追加内容哦 !