10月15,深圳大学教授谢和平团队以深圳大学和四川大学共建的深地工程智能建造与安全运维全国重点实验室为第一单位,在Nature子刊上发表海水制氢最新成果,把世人的目光再次聚焦到氢能上。谢和平团队就海水中的氯离子引发副反应和电极腐蚀现象,提出一种新的解耦式海水直接电解制氢策略,将有助于丰富和进一步构建破解海水复杂成分影响的海水电解制氢理论体系和技术框架。

据悉,该研究针对海水制氢中最棘手的氯离子干扰难题,引入氧化还原介导的解耦策略,利用兼具热力学和动力学优势的阳极反应,巧妙规避了传统电解水制氢过程中析氧反应与氯离子反应的直接竞争,大幅降低了电化学腐蚀。

同时,该研究探明了电解系统阴极析氢反应与阳极亚铁氰酸根氧化反应的高效性,厘清了解耦体系下氧气自发稳定产出的反应机理,实现全新系统在真实海水环境下250小时长时间稳定运行。其进一步拓宽了谢和平院士团队海水无淡化原位直接电解制氢全新原理技术体系,将为海水直接电解制氢的产业化发展提供理论指导。

目前,电解水制取1公斤氢气需要消耗9公斤水,如果加上辅助设施(如水纯化装备、冷却装备等)用水,制取1公斤氢气的用水量甚至达到20公斤至30公斤。海水制氢70%成本来自于能源消耗,15%左右来自设备成本,15%来自运维成本。

2024-10-18 23:50:00 作者更新了以下内容

6月21日,谢和平院士团队在《自然通讯》上发表了最新研究成果。

该研究基于谢和平院士团队2022年11月30日在《自然》上发文开创的相变迁移海水直接电解制氢全新原理与技术,围绕在真实大海中实现海水直接制氢面临的海水多场耦合复杂工况带来的波动性等科学难题与工程空白,提出了抵抗真实大海不可控海洋波动环境的海水直接制氢全新路径与技术;系统研究了不同海水组分(深圳湾、兴化湾)浓度变化导致的界面蒸气压差差异,阐明了浓度动态变化下相变迁移过程的自调控自适应机制;首次揭示了在不同海浪波形(恒流、乱流等)、波高、波宽条件下的相变迁移过程规律与影响机制,表明了在海浪一定程度冲击下有利于防止界面浓度极化从而提升相变传质效果,基于界面传质面积动态变化规律建立了真实海浪波动下的相变迁移海水制氢理论模型,并在实验室模拟海洋环境下实现了500小时以上稳定性,未发生催化剂腐蚀、毒性和腐蚀性,充分验证了电解系统、防水透气层等核心关键部件在复杂环境下的耐受性与抵御能力。

追加内容

本文作者可以追加内容哦 !