构建通用人工智能操作系统。我们现在已经在手机、树莓派、PC、无人机等等这些设备上完全运行了我们的大模型,之后会把模型变成一个操作系统,让更多的设备能够使用。当每一台设备都拥有智能能力以及自主学习能力之后,它就会形成群体智能。


图片


我们认为群体智能迭代的路线有四个阶段:


第一步是创新性基础架构。这个如果没有突破,后面都是零。Transformer架构现在遇到的问题,包括热议的Scaling Law似乎异常等等问题,就是因为第一步没有做好,而我们在很多年前就意识到了。

第二步是多元化硬件生态,让更多的设备用起来。

第三步是自适应智能进化,在设备上自主进化。

第四步是协同化群体智能,设备与设备之间串联起来,形成相互学习、协同效应。


图片


Transformer架构的训练模式,需要从物理世界去获得广泛的数据,大家有没有想过这个数据从哪里来的?


一个人产生的数据是非常有限的,基本上在社会里可以忽略不计,但是两个人产生的和四个人产生的数据是指数级增长的。现在的Transformer架构的模型把这些数据收集起来,放到云端训练,大家可以理解为,把人类社会群体智能产生的社会活动数据,喂给Transformer架构大模型。因为它是静止不动的,所以需要喂数据让它去训练、学习。


但是我们必须得让它走出来,如果说现阶段通过采集数据的方式已经让它有智能涌现的能力,那么让模型进入物理世界,它所产生的数据远远比采集的多,智能化程度就会得到超指数级的一个增长,这个过程中才会产生真正的智能,而这样的智能才是我们真正想要的。


图片


所以通往通用人工智能这条路,我们一直认为不是OpenAI选择的那条路,而是群体智能之路。不久前Google发了一篇paper专门讲群体智能,刚好印证了我们之前的很多想法。今天的技术峰会汇聚了很多技术的创新者和技术的领先者们,这是一个很好的契机,我们应该鼓励更多的人去做创新,而不是follow,这样中国的通用人工智能发展才有可能有希望。


谢谢大家!图片


作者 | 刘凡平

追加内容

本文作者可以追加内容哦 !